The Grothendieck-Teichmüller group and the outer automorphism groups of the profinite braid groups (joint work with Hiroaki Nakamura)

Arata Minamide
RIMS, Kyoto University
June 28, 2021

Discrete case

$n>3$: an integer
B_{n} : the (Artin) braid group on n strings
Example: $\quad(n=4)$

Discrete case

$n>3$: an integer
B_{n} : the (Artin) braid group on n strings
Example: $\quad(n=4)$

Discrete case

$n>3$: an integer
B_{n} : the (Artin) braid group on n strings
Example: $\quad(n=4)$

Discrete case

$n>3$: an integer
B_{n} : the (Artin) braid group on n strings
Example: $\quad(n=4)$

Note: We have

$$
B_{n} \cong\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{l}
\sigma_{i} \cdot \sigma_{i+1} \cdot \sigma_{i}=\sigma_{i+1} \cdot \sigma_{i} \cdot \sigma_{i+1} \\
\sigma_{i} \cdot \sigma_{j}=\sigma_{j} \cdot \sigma_{i}(|i-j| \geq 2)
\end{array}\right.\right\rangle
$$

Note: We have

$$
B_{n} \cong\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{l}
\sigma_{i} \cdot \sigma_{i+1} \cdot \sigma_{i}=\sigma_{i+1} \cdot \sigma_{i} \cdot \sigma_{i+1} \\
\sigma_{i} \cdot \sigma_{j}=\sigma_{j} \cdot \sigma_{i}(|i-j| \geq 2)
\end{array}\right.\right\rangle
$$

$\iota \in \operatorname{Aut}\left(B_{n}\right)$: the involutive automorphism of B_{n} determined by the formula $\sigma_{i} \mapsto \sigma_{i}^{-1} \quad(i=1,2, \ldots, n-1)$

Note: We have

$$
B_{n} \cong\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{l}
\sigma_{i} \cdot \sigma_{i+1} \cdot \sigma_{i}=\sigma_{i+1} \cdot \sigma_{i} \cdot \sigma_{i+1} \\
\sigma_{i} \cdot \sigma_{j}=\sigma_{j} \cdot \sigma_{i}(|i-j| \geq 2)
\end{array}\right.\right\rangle
$$

$\iota \in \operatorname{Aut}\left(B_{n}\right)$: the involutive automorphism of B_{n} determined by the formula $\sigma_{i} \mapsto \sigma_{i}^{-1} \quad(i=1,2, \ldots, n-1)$

Theorem (Dyer-Grossman)
The natural surjection $\operatorname{Aut}\left(B_{n}\right) \rightarrow \operatorname{Out}\left(B_{n}\right)$ induces

$$
\langle\iota\rangle \xrightarrow{\sim} \operatorname{Out}\left(B_{n}\right) .
$$

Profinite case

\widehat{B}_{n} : the profinite completion of B_{n}
\mathfrak{S}_{n} : the symmetric group on n letters
$\left(\mathbb{A}_{\mathbb{Q}}^{1}\right)_{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{A}_{\mathbb{Q}}^{1}\right)^{n} \mid x_{i} \neq x_{j}(i \neq j)\right\}$
The structure morphism $\left(\mathbb{A}_{\mathbb{Q}}^{1}\right)_{n} / \mathfrak{S}_{n} \rightarrow \operatorname{Spec}(\mathbb{Q})$ induces

Profinite case

\widehat{B}_{n} : the profinite completion of B_{n}
\mathfrak{S}_{n} : the symmetric group on n letters
$\left(\mathbb{A}_{\mathbb{Q}}^{1}\right)_{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{A}_{\mathbb{Q}}^{1}\right)^{n} \mid x_{i} \neq x_{j}(i \neq j)\right\}$
The structure morphism $\left(\mathbb{A}_{\mathbb{Q}}^{1}\right)_{n} / \mathfrak{S}_{n} \rightarrow \operatorname{Spec}(\mathbb{Q})$ induces

$$
G_{\mathbb{Q}} \stackrel{\text { def }}{=} \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \hookrightarrow \operatorname{Out}\left(\pi_{1}\left(\left(\left(\mathbb{A}_{\mathbb{Q}}^{1}\right)_{n} / \mathfrak{S}_{n}\right) \times_{\mathbb{Q}} \overline{\mathbb{Q}}\right)\right) \cong \operatorname{Out}\left(\widehat{B}_{n}\right)
$$

Abstract

Drinfeld and Ihara defined a certain subgroup $\widehat{\mathrm{GT}} \subseteq \operatorname{Aut}(\widehat{\mathbb{Z} * \mathbb{Z}})$, called the (profinite) Grothendieck-Teichmüller group, such that there exists a commutative diagram

Drinfeld and Ihara defined a certain subgroup $\widehat{\mathrm{GT}} \subseteq \operatorname{Aut}(\widehat{\mathbb{Z} * \mathbb{Z}})$, called the (profinite) Grothendieck-Teichmüller group, such that there exists a commutative diagram

Drinfeld and Ihara defined a certain subgroup $\widehat{\mathrm{GT}} \subseteq \operatorname{Aut}(\widehat{\mathbb{Z} * \mathbb{Z}})$, called the (profinite) Grothendieck-Teichmüller group, such that there exists a commutative diagram

Open problem: Is $G_{\mathbb{Q}} \hookrightarrow \widehat{\mathrm{GT}}$ an isomorphism?

Theorem (M.-Nakamura)
Write

$$
Z_{n} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\widehat{\mathbb{Z}}^{\times} \rightarrow(\widehat{\mathbb{Z}} / n(n-1) \widehat{\mathbb{Z}})^{\times}\right) .
$$

Then we have a natural homomorphism

$$
Z_{n} \rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right) .
$$

Theorem (M.-Nakamura)
Write

$$
Z_{n} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\widehat{\mathbb{Z}}^{\times} \rightarrow(\widehat{\mathbb{Z}} / n(n-1) \widehat{\mathbb{Z}})^{\times}\right) .
$$

Then we have a natural homomorphism

$$
Z_{n} \rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right)
$$

Moreover, this homomorphism and $\widehat{\mathrm{GT}} \rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right)$ induce

$$
Z_{n} \times \widehat{\mathrm{GT}} \xrightarrow{\sim} \operatorname{Out}\left(\widehat{B}_{n}\right) .
$$

Theorem (M.-Nakamura)
Write

$$
Z_{n} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\widehat{\mathbb{Z}}^{\times} \rightarrow(\widehat{\mathbb{Z}} / n(n-1) \widehat{\mathbb{Z}})^{\times}\right)
$$

Then we have a natural homomorphism

$$
Z_{n} \rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right)
$$

Moreover, this homomorphism and $\widehat{\mathrm{GT}} \rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right)$ induce

$$
Z_{n} \times \widehat{\mathrm{GT}} \xrightarrow{\sim} \operatorname{Out}\left(\widehat{B}_{n}\right) .
$$

Note: If $G_{\mathbb{Q}} \xrightarrow{\sim} \widehat{\mathrm{GT}}$, then we have $Z_{n} \times G_{\mathbb{Q}} \xrightarrow{\sim} \operatorname{Out}\left(\widehat{B}_{n}\right)$.

Definition of $Z_{n} \rightarrow \operatorname{Aut}\left(\widehat{B}_{n}\right)\left(\rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right)\right)$

Note: The center $C_{n} \subseteq B_{n}$ is an infinite cyclic group ($\cong \mathbb{Z}$) generated by $\zeta_{n} \stackrel{\text { def }}{=}\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}$.

Let $\nu \in Z_{n}$

Definition of $Z_{n} \rightarrow \operatorname{Aut}\left(\widehat{B}_{n}\right)\left(\rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right)\right)$

Note: The center $C_{n} \subseteq B_{n}$ is an infinite cyclic group ($\cong \mathbb{Z}$) generated by $\zeta_{n} \stackrel{\text { def }}{=}\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}$.

Let $\nu \in Z_{n} \Longrightarrow \nu=1+n(n-1) e \quad(e \in \widehat{\mathbb{Z}})$

Definition of $Z_{n} \rightarrow \operatorname{Aut}\left(\widehat{B}_{n}\right)\left(\rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right)\right)$

Note: The center $C_{n} \subseteq B_{n}$ is an infinite cyclic group ($\cong \mathbb{Z}$) generated by $\zeta_{n} \stackrel{\text { def }}{=}\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}$.

Let $\nu \in Z_{n} \Longrightarrow \nu=1+n(n-1) e \quad(e \in \widehat{\mathbb{Z}})$
Set $\phi_{\nu}\left(\sigma_{i}\right) \stackrel{\text { def }}{=} \sigma_{i} \cdot \zeta_{n}^{e} \in \widehat{B}_{n} \quad(i=1, \ldots, n-1)$

Definition of $Z_{n} \rightarrow \operatorname{Aut}\left(\widehat{B}_{n}\right)\left(\rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right)\right)$

Note: The center $C_{n} \subseteq B_{n}$ is an infinite cyclic group $(\cong \mathbb{Z})$ generated by $\zeta_{n} \stackrel{\text { def }}{=}\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}$.

Let $\nu \in Z_{n} \Longrightarrow \nu=1+n(n-1) e \quad(e \in \widehat{\mathbb{Z}})$
Set $\phi_{\nu}\left(\sigma_{i}\right) \stackrel{\text { def }}{=} \sigma_{i} \cdot \zeta_{n}^{e} \in \widehat{B}_{n} \quad(i=1, \ldots, n-1)$
$\Longrightarrow\left\{\phi_{\nu}\left(\sigma_{i}\right)\right\}_{i=1, \ldots, n-1}$ satisfy the "braid relations".

Definition of $Z_{n} \rightarrow \operatorname{Aut}\left(\widehat{B}_{n}\right)\left(\rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right)\right)$

Note: The center $C_{n} \subseteq B_{n}$ is an infinite cyclic group $(\cong \mathbb{Z})$ generated by $\zeta_{n} \stackrel{\text { def }}{=}\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}$.

Let $\nu \in Z_{n} \Longrightarrow \nu=1+n(n-1) e \quad(e \in \widehat{\mathbb{Z}})$
Set $\phi_{\nu}\left(\sigma_{i}\right) \stackrel{\text { def }}{=} \sigma_{i} \cdot \zeta_{n}^{e} \in \widehat{B}_{n} \quad(i=1, \ldots, n-1)$
$\Longrightarrow\left\{\phi_{\nu}\left(\sigma_{i}\right)\right\}_{i=1, \ldots, n-1}$ satisfy the "braid relations".
\Longrightarrow We obtain a homomorphism $\phi_{\nu}: \widehat{B}_{n} \rightarrow \widehat{B}_{n}$.

Lemma 1
It holds that

$$
\phi_{1}=\mathrm{id} ; \quad \phi_{\nu_{1} \cdot \nu_{2}}=\phi_{\nu_{1}} \circ \phi_{\nu_{2}} \quad\left(\nu_{1}, \nu_{2} \in Z_{n}\right) .
$$

Lemma 1
It holds that

$$
\phi_{1}=\mathrm{id} ; \quad \phi_{\nu_{1} \cdot \nu_{2}}=\phi_{\nu_{1}} \circ \phi_{\nu_{2}} \quad\left(\nu_{1}, \nu_{2} \in Z_{n}\right) .
$$

Proof.

This follows from the formula

$$
\phi_{\nu}\left(\zeta_{n}\right)=\phi_{\nu}\left(\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}\right)=\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n} \cdot \zeta_{n}^{n(n-1) e}=\zeta_{n}^{\nu}
$$

Lemma 1
It holds that

$$
\phi_{1}=\mathrm{id} ; \quad \phi_{\nu_{1} \cdot \nu_{2}}=\phi_{\nu_{1}} \circ \phi_{\nu_{2}} \quad\left(\nu_{1}, \nu_{2} \in Z_{n}\right) .
$$

Proof.

This follows from the formula

$$
\phi_{\nu}\left(\zeta_{n}\right)=\phi_{\nu}\left(\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}\right)=\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n} \cdot \zeta_{n}^{n(n-1) e}=\zeta_{n}^{\nu}
$$

$\Longrightarrow \phi_{\nu}: \widehat{B}_{n} \rightarrow \widehat{B}_{n}$ is a bijection (cf. $\phi_{\nu} \circ \phi_{\nu^{-1}}=\mathrm{id}$).

Lemma 1
It holds that

$$
\phi_{1}=\mathrm{id} ; \quad \phi_{\nu_{1} \cdot \nu_{2}}=\phi_{\nu_{1}} \circ \phi_{\nu_{2}} \quad\left(\nu_{1}, \nu_{2} \in Z_{n}\right) .
$$

Proof.

This follows from the formula

$$
\phi_{\nu}\left(\zeta_{n}\right)=\phi_{\nu}\left(\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}\right)=\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n} \cdot \zeta_{n}^{n(n-1) e}=\zeta_{n}^{\nu}
$$

$\Longrightarrow \phi_{\nu}: \widehat{B}_{n} \rightarrow \widehat{B}_{n}$ is a bijection (cf. $\phi_{\nu} \circ \phi_{\nu^{-1}}=\mathrm{id}$).
\Longrightarrow We obtain a homomorphism

$$
\begin{aligned}
\phi: Z_{n} & \rightarrow \operatorname{Aut}\left(\widehat{B}_{n}\right) \\
\nu & \mapsto \phi_{\nu}
\end{aligned}
$$

Outline of the proof of Theorem

Step1 Write $\mathcal{B}_{n} \stackrel{\text { def }}{=} B_{n} / C_{n}$. We show that the composite

$$
\widehat{\mathrm{GT}} \rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right) \rightarrow \operatorname{Out}\left(\widehat{\mathcal{B}}_{n}\right)
$$

is an isomorphism. (Note that we have $\widehat{\mathcal{B}}_{n} \xrightarrow{\sim} \widehat{B}_{n} / \widehat{C}_{n}$.)

Outline of the proof of Theorem

Step1 Write $\mathcal{B}_{n} \stackrel{\text { def }}{=} B_{n} / C_{n}$. We show that the composite

$$
\widehat{\mathrm{GT}} \rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right) \rightarrow \operatorname{Out}\left(\widehat{\mathcal{B}}_{n}\right)
$$

is an isomorphism. (Note that we have $\widehat{\mathcal{B}}_{n} \xrightarrow{\sim} \widehat{B}_{n} / \widehat{C}_{n}$.)
Corollary of Step1

Outline of the proof of Theorem

Step1 Write $\mathcal{B}_{n} \stackrel{\text { def }}{=} B_{n} / C_{n}$. We show that the composite

$$
\widehat{\mathrm{GT}} \rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right) \rightarrow \operatorname{Out}\left(\widehat{\mathcal{B}}_{n}\right)
$$

is an isomorphism. (Note that we have $\widehat{\mathcal{B}}_{n} \xrightarrow{\sim} \widehat{B}_{n} / \widehat{C}_{n}$.)
Corollary of Step1
$\Gamma_{1,2}$: the pure mapping class group of torus $\mathrm{w} / 2$ marked pts

Outline of the proof of Theorem

Step1 Write $\mathcal{B}_{n} \stackrel{\text { def }}{=} B_{n} / C_{n}$. We show that the composite

$$
\widehat{\mathrm{GT}} \rightarrow \operatorname{Out}\left(\widehat{B}_{n}\right) \rightarrow \operatorname{Out}\left(\widehat{\mathcal{B}}_{n}\right)
$$

is an isomorphism. (Note that we have $\widehat{\mathcal{B}}_{n} \xrightarrow{\sim} \widehat{B}_{n} / \widehat{C}_{n}$.)
Corollary of Step1
$\Gamma_{1,2}$: the pure mapping class group of torus $\mathrm{w} / 2$ marked pts

Corollary (M.-Nakamura)
We have a natural isomorphism

$$
\widehat{\mathrm{GT}}\left[\xrightarrow{\sim} \operatorname{Out}\left(\widehat{\mathcal{B}}_{4}\right)\right] \xrightarrow{\sim} \operatorname{Out}\left(\widehat{\Gamma}_{1,2}\right) .
$$

Step2 We show that there is a central extension

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \longrightarrow \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Step2 We show that there is a central extension

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \longrightarrow \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Then we have

$$
1 \longrightarrow Z_{n} \longrightarrow \operatorname{Out}\left(\widehat{B}_{n}\right) \longrightarrow \operatorname{Out}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Step2 We show that there is a central extension

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \longrightarrow \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Then we have

Step2 We show that there is a central extension

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \longrightarrow \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Then we have

Step2 We show that there is a central extension

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \longrightarrow \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Then we have

Step2 We show that there is a central extension

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \longrightarrow \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Then we have

Therefore, we conclude that $Z_{n} \times \widehat{\mathrm{GT}} \xrightarrow{\sim} \operatorname{Out}\left(\widehat{B}_{n}\right)$.

Details of Step1

Idea Observe that $\mathcal{P}_{n} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\mathcal{B}_{n} \rightarrow \mathfrak{S}_{n}\right)$ may be identified with
$\Gamma_{0, n+1}$: the pure mapping class group of sphere $\mathrm{w} / n+1$ marked pts.

Details of Step1

Idea Observe that $\mathcal{P}_{n} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\mathcal{B}_{n} \rightarrow \mathfrak{S}_{n}\right)$ may be identified with $\Gamma_{0, n+1}$: the pure mapping class group of sphere $\mathrm{w} / n+1$ marked pts.

Note: $\widehat{\Gamma}_{0, n+1}$ may be identified with the étale π_{1} of the $(n-2)$-nd config. sp. of $\mathbb{P}_{\mathbb{Q}}^{1} \backslash\{0,1, \infty\}$

Details of Step1

Idea Observe that $\mathcal{P}_{n} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\mathcal{B}_{n} \rightarrow \mathfrak{S}_{n}\right)$ may be identified with $\Gamma_{0, n+1}$: the pure mapping class group of sphere $\mathrm{w} / n+1$ marked pts.

Note: $\widehat{\Gamma}_{0, n+1}$ may be identified with the étale π_{1} of the $(n-2)$-nd config. sp. of $\mathbb{P}_{\mathbb{Q}}^{1} \backslash\{0,1, \infty\} \cdots$ anabelian variety!

Details of Step1

Idea Observe that $\mathcal{P}_{n} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\mathcal{B}_{n} \rightarrow \mathfrak{S}_{n}\right)$ may be identified with $\Gamma_{0, n+1}$: the pure mapping class group of sphere $\mathrm{w} / n+1$ marked pts.

Note: $\widehat{\Gamma}_{0, n+1}$ may be identified with the étale π_{1} of the $(n-2)$-nd config. sp. of $\mathbb{P}_{\mathbb{Q}}^{1} \backslash\{0,1, \infty\} \cdots$ anabelian variety!
[cf. combinatorial anabelian geometry].

Details of Step1

Idea Observe that $\mathcal{P}_{n} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\mathcal{B}_{n} \rightarrow \mathfrak{S}_{n}\right)$ may be identified with
$\Gamma_{0, n+1}$: the pure mapping class group of sphere $\mathrm{w} / n+1$ marked pts.
Note: $\widehat{\Gamma}_{0, n+1}$ may be identified with the étale π_{1} of the $(n-2)$-nd config. sp. of $\mathbb{P}_{\mathbb{Q}}^{1} \backslash\{0,1, \infty\} \cdots$ anabelian variety!
[cf. combinatorial anabelian geometry].

Theorem (Hoshi-M.-Mochizuki)
We have a natural isomorphism

$$
\mathfrak{S}_{n+1} \times \widehat{\mathrm{GT}} \xrightarrow{\sim} \operatorname{Out}\left(\widehat{\Gamma}_{0, n+1}\right)
$$

Denote by

$\Gamma_{0,[n+1]}$: the mapping class group of sphere $\mathrm{w} / n+1$ marked pts

Denote by

$\Gamma_{0,[n+1]}$: the mapping class group of sphere $\mathrm{w} / n+1$ marked pts

$$
\cong\left\langle\begin{array}{l|l}
\omega_{1}, \omega_{2}, \ldots, \omega_{n} & \begin{array}{l}
\text { "braid relations"; }\left(\omega_{1} \cdots \omega_{n}\right)^{n+1}=1 ; \\
\omega_{1} \cdots \omega_{n-1} \cdot \omega_{n}^{2} \cdot \omega_{n-1} \cdots \omega_{1}=1
\end{array}
\end{array}\right\rangle
$$

Denote by

$\Gamma_{0,[n+1]}$: the mapping class group of sphere $\mathrm{w} / n+1$ marked pts

$$
\cong\left\langle\begin{array}{l|l}
\omega_{1}, \omega_{2}, \ldots, \omega_{n} & \begin{array}{l}
\text { "braid relations"; }\left(\omega_{1} \cdots \omega_{n}\right)^{n+1}=1 ; \\
\omega_{1} \cdots \omega_{n-1} \cdot \omega_{n}^{2} \cdot \omega_{n-1} \cdots \omega_{1}=1
\end{array}
\end{array}\right\rangle
$$

Note: We have a commutative diagram

— where $\widehat{\mathcal{B}}_{n} \rightarrow \widehat{\Gamma}_{0,[n+1]}$ is defined to be $\bar{\sigma}_{i} \mapsto \omega_{i}$.

Lemma 2
Let

be an exact sequence of finitely generated profinite groups. Write $\rho: G \rightarrow \operatorname{Out}(\Delta)$ for the outer rep'n assoc. to the exact sequence.

Lemma 2
Let

$$
1 \longrightarrow \Delta \longrightarrow \Pi \longrightarrow G \longrightarrow 1
$$

be an exact sequence of finitely generated profinite groups. Write $\rho: G \rightarrow \operatorname{Out}(\Delta)$ for the outer rep'n assoc. to the exact sequence. Suppose that

- Δ and G are center-free.
- $\Delta \subseteq \Pi$ is a characteristic subgroup.

Lemma 2
Let

$$
1 \longrightarrow \Delta \longrightarrow \Pi \longrightarrow G \longrightarrow 1
$$

be an exact sequence of finitely generated profinite groups. Write $\rho: G \rightarrow \operatorname{Out}(\Delta)$ for the outer rep'n assoc. to the exact sequence. Suppose that

- Δ and G are center-free.
- $\Delta \subseteq \Pi$ is a characteristic subgroup.

Then we have an exact sequence

$$
1 \longrightarrow Z_{\operatorname{Out}(\Delta)}(\operatorname{Im}(\rho)) \longrightarrow \operatorname{Out}(\Pi) \longrightarrow \operatorname{Out}(G)
$$

- where $Z_{\text {Out }(\Delta)}(\operatorname{Im}(\rho))$ is the centralizer of $\operatorname{Im}(\rho)$ in $\operatorname{Out}(\Delta)$.

We would like to apply Lemma 2 to the exact sequence

$$
\begin{aligned}
& 1 \longrightarrow \widehat{\mathcal{P}}_{n} \longrightarrow \widehat{\mathcal{B}}_{n} \longrightarrow \mathfrak{S}_{n} \longrightarrow 1 \\
& \uparrow_{2} \\
& \widehat{\Gamma}_{0, n+1}
\end{aligned}
$$

We would like to apply Lemma 2 to the exact sequence

$$
\begin{aligned}
& 1 \longrightarrow \widehat{\mathcal{P}}_{n} \longrightarrow \widehat{\mathcal{B}}_{n} \longrightarrow \mathfrak{S}_{n} \longrightarrow 1 \\
& \uparrow_{2} \\
& \widehat{\Gamma}_{0, n+1}
\end{aligned}
$$

to obtain an exact sequence

$$
1 \longrightarrow Z_{\operatorname{Out}\left(\widehat{\Gamma}_{0, n+1}\right)}\left(\mathfrak{S}_{n}\right) \longrightarrow \operatorname{Out}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow \operatorname{Out}\left(\mathfrak{S}_{n}\right)
$$

We would like to apply Lemma 2 to the exact sequence

$$
\begin{aligned}
1 \longrightarrow & \widehat{\mathcal{P}}_{n} \longrightarrow \widehat{\mathcal{B}}_{n} \longrightarrow \mathfrak{S}_{n} \longrightarrow 1 \\
& \uparrow_{2} \\
& \widehat{\Gamma}_{0, n+1}
\end{aligned}
$$

to obtain an exact sequence

$$
1 \longrightarrow Z_{\operatorname{Out}\left(\widehat{\Gamma}_{0, n+1}\right)}\left(\mathfrak{S}_{n}\right) \longrightarrow \operatorname{Out}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow \operatorname{Out}\left(\mathfrak{S}_{n}\right)
$$

We would like to apply Lemma 2 to the exact sequence

$$
\begin{aligned}
1 \longrightarrow & \widehat{\mathcal{P}}_{n} \longrightarrow \widehat{\mathcal{B}}_{n} \longrightarrow \mathfrak{S}_{n} \longrightarrow 1 \\
& \uparrow_{2} \\
& \widehat{\Gamma}_{0, n+1}
\end{aligned}
$$

to obtain an exact sequence

$$
\begin{gather*}
1 \longrightarrow Z_{\substack{\text { Out }\left(\widehat{\Gamma}_{0, n+1}\right)}}\left(\mathfrak{S}_{n}\right) \longrightarrow \operatorname{Out}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow(n \neq 6) \| \\
Z_{\widehat{\mathrm{GT}} \times \mathfrak{S}_{n+1}}\left(\mathfrak{S}_{n}\right)
\end{gather*}
$$

We would like to apply Lemma 2 to the exact sequence

$$
\begin{aligned}
1 \longrightarrow & \widehat{\mathcal{P}}_{n} \longrightarrow \widehat{\mathcal{B}}_{n} \longrightarrow \mathfrak{S}_{n} \longrightarrow 1 \\
& \uparrow_{2} \\
& \widehat{\Gamma}_{0, n+1}
\end{aligned}
$$

to obtain an exact sequence

$$
\begin{aligned}
& 1 \longrightarrow Z_{\operatorname{Out}\left(\widehat{\Gamma}_{0, n+1}\right)}\left(\mathfrak{S}_{n}\right) \longrightarrow \operatorname{Out}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow \operatorname{Out}\left(\mathfrak{S}_{n}\right) \\
& {[H M M]{ }^{2}} \\
& Z_{\widehat{\mathrm{GT}} \times \mathfrak{S}_{n+1}}\left(\mathfrak{S}_{n}\right) \\
& \frac{\uparrow_{2}}{\widehat{\text { GT }}}
\end{aligned}
$$

Note: $\widehat{\mathcal{P}}_{n}\left[\cong \widehat{\Gamma}_{0, n+1}\right]$ and \mathfrak{S}_{n} are center-free.
Thus, to apply Lemma 2, it suffices to check the following:

Note: $\widehat{\mathcal{P}}_{n}\left[\cong \widehat{\Gamma}_{0, n+1}\right]$ and \mathfrak{S}_{n} are center-free.
Thus, to apply Lemma 2, it suffices to check the following:

Proposition
$\widehat{\mathcal{P}}_{n} \subseteq \widehat{\mathcal{B}}_{n}$ is a characteristic subgroup.

Note: $\widehat{\mathcal{P}}_{n}\left[\cong \widehat{\Gamma}_{0, n+1}\right]$ and \mathfrak{S}_{n} are center-free.
Thus, to apply Lemma 2, it suffices to check the following:

Proposition
$\widehat{\mathcal{P}}_{n} \subseteq \widehat{\mathcal{B}}_{n}$ is a characteristic subgroup.

Lemma 3
Let G be a residually finite $g p$ (i.e., $G \hookrightarrow \widehat{G}$); $N \subseteq G$ a finite index normal subgp. Suppose that $\operatorname{Ker}(G \stackrel{\forall}{\rightarrow} Q \stackrel{\text { def }}{=} G / N)$ coincides with N.
Then $\operatorname{Ker}(\widehat{G} \stackrel{\forall}{\rightarrow} Q)$ coincides with \widehat{N}.

Theorem (E. Artin)
Let

$$
\varphi: B_{n} \rightarrow \mathfrak{S}_{n}
$$

be a surjective homomorphism.

Theorem (E. Artin)
Let

$$
\varphi: B_{n} \rightarrow \mathfrak{S}_{n}
$$

be a surjective homomorphism. Then, up to some autom. $\in \operatorname{Aut}\left(\mathfrak{S}_{n}\right)$, φ is the "standard surjection" (i.e., $\varphi\left(\sigma_{i}\right)=(i, i+1) \in \mathfrak{S}_{n}$), with the following two exceptions for $n=4$:
(a) $\varphi\left(\sigma_{1}\right)=(1,2,3,4), \varphi\left(\sigma_{2}\right)=(2,1,3,4), \varphi\left(\sigma_{3}\right)=(1,2,3,4)$;
(b) $\varphi\left(\sigma_{1}\right)=(1,2,3,4), \varphi\left(\sigma_{2}\right)=(2,1,3,4), \varphi\left(\sigma_{3}\right)=(4,3,2,1)$.

Theorem (E. Artin)
Let

$$
\varphi: B_{n} \rightarrow \mathfrak{S}_{n}
$$

be a surjective homomorphism. Then, up to some autom. $\in \operatorname{Aut}\left(\mathfrak{S}_{n}\right)$, φ is the "standard surjection" (i.e., $\varphi\left(\sigma_{i}\right)=(i, i+1) \in \mathfrak{S}_{n}$), with the following two exceptions for $n=4$:
(a) $\varphi\left(\sigma_{1}\right)=(1,2,3,4), \varphi\left(\sigma_{2}\right)=(2,1,3,4), \varphi\left(\sigma_{3}\right)=(1,2,3,4)$;
(b) $\varphi\left(\sigma_{1}\right)=(1,2,3,4), \varphi\left(\sigma_{2}\right)=(2,1,3,4), \quad \varphi\left(\sigma_{3}\right)=(4,3,2,1)$.

In particular, if $n \geq 5$, then

Theorem (E. Artin)
Let

$$
\varphi: B_{n} \rightarrow \mathfrak{S}_{n}
$$

be a surjective homomorphism. Then, up to some autom. $\in \operatorname{Aut}\left(\mathfrak{S}_{n}\right)$, φ is the "standard surjection" (i.e., $\varphi\left(\sigma_{i}\right)=(i, i+1) \in \mathfrak{S}_{n}$), with the following two exceptions for $n=4$:
(a) $\varphi\left(\sigma_{1}\right)=(1,2,3,4), \varphi\left(\sigma_{2}\right)=(2,1,3,4), \varphi\left(\sigma_{3}\right)=(1,2,3,4)$;
(b) $\varphi\left(\sigma_{1}\right)=(1,2,3,4), \varphi\left(\sigma_{2}\right)=(2,1,3,4), \varphi\left(\sigma_{3}\right)=(4,3,2,1)$.

In particular, if $n \geq 5$, then $\operatorname{Ker}\left(\mathcal{B}_{n} \stackrel{\forall}{\rightarrow} \mathfrak{S}_{n}\right)=\mathcal{P}_{n}$

Theorem (E. Artin)
Let

$$
\varphi: B_{n} \rightarrow \mathfrak{S}_{n}
$$

be a surjective homomorphism. Then, up to some autom. $\in \operatorname{Aut}\left(\mathfrak{S}_{n}\right)$, φ is the "standard surjection" (i.e., $\varphi\left(\sigma_{i}\right)=(i, i+1) \in \mathfrak{S}_{n}$), with the following two exceptions for $n=4$:
(a) $\varphi\left(\sigma_{1}\right)=(1,2,3,4), \varphi\left(\sigma_{2}\right)=(2,1,3,4), \varphi\left(\sigma_{3}\right)=(1,2,3,4)$;
(b) $\varphi\left(\sigma_{1}\right)=(1,2,3,4), \varphi\left(\sigma_{2}\right)=(2,1,3,4), \varphi\left(\sigma_{3}\right)=(4,3,2,1)$.

In particular, if $n \geq 5$, then $\operatorname{Ker}\left(\mathcal{B}_{n} \stackrel{\forall}{\rightarrow} \mathfrak{S}_{n}\right)=\mathcal{P}_{n}$

$$
\Longrightarrow \operatorname{Ker}\left(\widehat{\mathcal{B}}_{n} \xrightarrow{\forall} \mathfrak{S}_{n}\right)=\widehat{\mathcal{P}}_{n} \quad(\text { cf. Lemma 3) }
$$

Theorem (E. Artin)
Let

$$
\varphi: B_{n} \rightarrow \mathfrak{S}_{n}
$$

be a surjective homomorphism. Then, up to some autom. $\in \operatorname{Aut}\left(\mathfrak{S}_{n}\right)$, φ is the "standard surjection" (i.e., $\varphi\left(\sigma_{i}\right)=(i, i+1) \in \mathfrak{S}_{n}$), with the following two exceptions for $n=4$:
(a) $\varphi\left(\sigma_{1}\right)=(1,2,3,4), \varphi\left(\sigma_{2}\right)=(2,1,3,4), \varphi\left(\sigma_{3}\right)=(1,2,3,4)$;
(b) $\varphi\left(\sigma_{1}\right)=(1,2,3,4), \varphi\left(\sigma_{2}\right)=(2,1,3,4), \quad \varphi\left(\sigma_{3}\right)=(4,3,2,1)$.

In particular, if $n \geq 5$, then $\operatorname{Ker}\left(\mathcal{B}_{n} \stackrel{\forall}{\rightarrow} \mathfrak{S}_{n}\right)=\mathcal{P}_{n}$

$$
\begin{aligned}
& \Longrightarrow \operatorname{Ker}\left(\widehat{\mathcal{B}}_{n} \xrightarrow{\forall} \mathfrak{S}_{n}\right)=\widehat{\mathcal{P}}_{n} \quad \text { (cf. Lemma 3) } \\
& \Longrightarrow \widehat{\mathcal{P}}_{n} \subseteq \widehat{\mathcal{B}}_{n} \text { is characteristic! }
\end{aligned}
$$

Remark: In the proof of [DG, Theorem 11] claiming that $\mathcal{P}_{4} \subseteq \mathcal{B}_{4}$ is characteristic, there is an inaccurate argument. They forgot to treat the case (b). (Moreover, the argument which was applied to "eliminate the case (a)" does not function properly for the case (b).)

Remark: In the proof of [DG, Theorem 11] claiming that $\mathcal{P}_{4} \subseteq \mathcal{B}_{4}$ is characteristic, there is an inaccurate argument. They forgot to treat the case (b). (Moreover, the argument which was applied to "eliminate the case (a)" does not function properly for the case (b).)
\Longrightarrow We need another argument to prove that $\widehat{\mathcal{P}}_{4} \subseteq \widehat{\mathcal{B}}_{4}$ is characteristic.

Remark: In the proof of [DG, Theorem 11] claiming that $\mathcal{P}_{4} \subseteq \mathcal{B}_{4}$ is characteristic, there is an inaccurate argument. They forgot to treat the case (b). (Moreover, the argument which was applied to "eliminate the case (a)" does not function properly for the case (b).)
\Longrightarrow We need another argument to prove that $\widehat{\mathcal{P}}_{4} \subseteq \widehat{\mathcal{B}}_{4}$ is characteristic.
Ingredients The following "anabelian results":

Remark: In the proof of [DG, Theorem 11] claiming that $\mathcal{P}_{4} \subseteq \mathcal{B}_{4}$ is characteristic, there is an inaccurate argument. They forgot to treat the case (b). (Moreover, the argument which was applied to "eliminate the case (a)" does not function properly for the case (b).)
\Longrightarrow We need another argument to prove that $\widehat{\mathcal{P}}_{4} \subseteq \widehat{\mathcal{B}}_{4}$ is characteristic.
Ingredients The following "anabelian results":

- a special property of finite subgroups of free profinite products (cf. Herfort-Ribes);

Remark: In the proof of [DG, Theorem 11] claiming that $\mathcal{P}_{4} \subseteq \mathcal{B}_{4}$ is characteristic, there is an inaccurate argument. They forgot to treat the case (b). (Moreover, the argument which was applied to "eliminate the case (a)" does not function properly for the case (b).)
\Longrightarrow We need another argument to prove that $\widehat{\mathcal{P}}_{4} \subseteq \widehat{\mathcal{B}}_{4}$ is characteristic.
Ingredients The following "anabelian results":

- a special property of finite subgroups of free profinite products (cf. Herfort-Ribes);
- a special property of free profinite groups (cf. Lubotzky-van den Dries).

Details of Step2

We consider the following sequence:

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \xrightarrow{\mathfrak{p}_{1}} \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Exactness at the middle

Details of Step2

We consider the following sequence:

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \xrightarrow{\mathfrak{p}_{1}} \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Exactness at the middle Let $\alpha \in \operatorname{Ker}\left(\mathfrak{p}_{1}\right)$.

Details of Step2

We consider the following sequence:

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \xrightarrow{\mathfrak{p}_{1}} \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Exactness at the middle Let $\alpha \in \operatorname{Ker}\left(\mathfrak{p}_{1}\right)$.

Note: $\alpha\left(\zeta_{n}\right)=\zeta_{n}^{\nu} \quad\left(\nu \in \widehat{\mathbb{Z}}^{\times}\right) ; \quad \alpha\left(\sigma_{i}\right)=\sigma_{i} \cdot \zeta_{n}^{e_{i}} \quad\left(e_{i} \in \widehat{\mathbb{Z}}\right)$

Details of Step2

We consider the following sequence:

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \xrightarrow{\mathfrak{p}_{1}} \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Exactness at the middle Let $\alpha \in \operatorname{Ker}\left(\mathfrak{p}_{1}\right)$.

Note: $\alpha\left(\zeta_{n}\right)=\zeta_{n}^{\nu} \quad\left(\nu \in \widehat{\mathbb{Z}}^{\times}\right) ; \quad \alpha\left(\sigma_{i}\right)=\sigma_{i} \cdot \zeta_{n}^{e_{i}} \quad\left(e_{i} \in \widehat{\mathbb{Z}}\right)$
\Longrightarrow All e_{i} are the same constant $e \in \widehat{\mathbb{Z}}$ (cf. the "braid relations").

Details of Step2

We consider the following sequence:

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \xrightarrow{\mathfrak{p}_{1}} \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Exactness at the middle Let $\alpha \in \operatorname{Ker}\left(\mathfrak{p}_{1}\right)$.
Note: $\alpha\left(\zeta_{n}\right)=\zeta_{n}^{\nu} \quad\left(\nu \in \widehat{\mathbb{Z}}^{\times}\right) ; \quad \alpha\left(\sigma_{i}\right)=\sigma_{i} \cdot \zeta_{n}^{e_{i}} \quad\left(e_{i} \in \widehat{\mathbb{Z}}\right)$
\Longrightarrow All e_{i} are the same constant $e \in \widehat{\mathbb{Z}}$ (cf. the "braid relations").
$\Longrightarrow \quad \nu=1+n(n-1) e \in Z_{n} \quad\left(c f . \quad \zeta_{n}=\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}\right)$.

Details of Step 2

We consider the following sequence:

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \xrightarrow{\mathfrak{p}_{1}} \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Exactness at the middle Let $\alpha \in \operatorname{Ker}\left(\mathfrak{p}_{1}\right)$.
Note: $\alpha\left(\zeta_{n}\right)=\zeta_{n}^{\nu} \quad\left(\nu \in \widehat{\mathbb{Z}}^{\times}\right) ; \quad \alpha\left(\sigma_{i}\right)=\sigma_{i} \cdot \zeta_{n}^{e_{i}} \quad\left(e_{i} \in \widehat{\mathbb{Z}}\right)$
\Longrightarrow All e_{i} are the same constant $e \in \widehat{\mathbb{Z}}$ (cf. the "braid relations").
$\Longrightarrow \quad \nu=1+n(n-1) e \in Z_{n} \quad\left(c f . \quad \zeta_{n}=\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}\right)$.
$\Longrightarrow \alpha=\phi_{\nu} \in \operatorname{Im}(\phi)$.

Details of Step2

We consider the following sequence:

$$
1 \longrightarrow Z_{n} \xrightarrow{\phi} \operatorname{Aut}\left(\widehat{B}_{n}\right) \xrightarrow{\mathfrak{p}_{1}} \operatorname{Aut}\left(\widehat{\mathcal{B}}_{n}\right) \longrightarrow 1 .
$$

Exactness at the middle Let $\alpha \in \operatorname{Ker}\left(\mathfrak{p}_{1}\right)$.
Note: $\alpha\left(\zeta_{n}\right)=\zeta_{n}^{\nu} \quad\left(\nu \in \widehat{\mathbb{Z}}^{\times}\right) ; \quad \alpha\left(\sigma_{i}\right)=\sigma_{i} \cdot \zeta_{n}^{e_{i}} \quad\left(e_{i} \in \widehat{\mathbb{Z}}\right)$
\Longrightarrow All e_{i} are the same constant $e \in \widehat{\mathbb{Z}}$ (cf. the "braid relations").
$\Longrightarrow \quad \nu=1+n(n-1) e \in Z_{n} \quad\left(c f . \quad \zeta_{n}=\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}\right)$.
$\Longrightarrow \alpha=\phi_{\nu} \in \operatorname{Im}(\phi)$.
Remark: Using this argument, we can also prove the "centrality".

